
821

0022-4715/04/0800-0821/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 116, Nos. 1/4, August 2004 (© 2004)

Localization in Infinite Billiards: A Comparison
between Quantum and Classical Ergodicity

Sandro Graffi1 and Marco Lenci2

1Dipartimento di Matematica, Università di Bologna , Piazza di Porta S. Donato 5, 40127
Bologna, Italy; e-mail: graffi@dm.unibo.it
2Department of Mathematical Sciences, Stevens Institute of Technology Hoboken, New
Jersey 07030; e-mail: mlenci@math.stevens.edu

Received June 25, 2003; accepted October 16, 2003

Consider the non-compact billiard in the first quandrant bounded by the posi-
tive x-semiaxis, the positive y-semiaxis and the graph of f(x)=(x+1)−a,
a ¥ (1, 2]. Although the Schnirelman Theorem holds, the quantum average of
the position x is finite on any eigenstate, while classical ergodicity entails that
the classical time average of x is unbounded.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

The purpose of this note is to exhibit a simple example of a chaotic system
in which the long time classical and quantum evolutions can be proved to
be qualitatively different even though the Schnirelman Theorem (some-
times called quantum ergodicity: see ref. 15 and also refs. 2, 5, 6, 22, and
24) holds.

Let Q be the planar domain bounded by the positive x-semiaxis, the
positive y-semiaxis and the graph of f(x)=(x+1)−a, a ¥ (1, 2]. Notice
that Area(Q) < +.. Let f t: Q×S1

0 Q×S1 be the dynamical flow corre-
sponding to the billiard motion in Q. This is the Hamiltonian flow of a
particle of energy 1 that moves freely in Q and performs totally elastic
collisions at the boundary. By ref. 8 f t is ergodic w.r.t. the normalized
Liouville measure dn :=(2p Area(Q))−1 dx dy dh. (Ergodicity there is
proved for some Poincaré sections and then extended to the billiard flow;



see also ref. 9 for a general class of ergodic billiards of the like, of finite or
infinite area, including some that qualify as further examples for the present
paper.) Moreover, as we show in the Appendix below, the Lyapunov
exponent of the flow is positive. Therefore this system is chaotic according
to general consensus.

In quantum mechanics, the corresponding system is defined by the
Schrödinger operator

H :=−(2DD, D(H)=H2(Q) 5 H1
0(Q) … L2(Q), (1.1)

where DD is the Laplacian with Dirichlet boundary conditions at “Q. It is
an old result of Rellich that DD is self-adjoint with compact resolvent.
Hence Spec(H) is discrete. (More recent results on Spec(DD) include refs. 3,
14, 16, 19, and 20.) We denote Ej(()=(2aj, j ¥N, the eigenvalue of H
corresponding to the normalized eigenfunction kj. The order is such that
j W aj is non-decreasing and {kj}j ¥N is a complete orthonormal system.

The classical time average of the coordinate x is

X̄(x, y, h) := lim
TQ+.

1
T
F
T

0
X p f t(x, y, h) dt, (1.2)

where X(x, y, h) :=x. In principle one does not know whether this limit
exists for almost all (x, y, h), as X ¨ L1(Q×S1) and Birkhoff’s Theorem
does not apply. However, Proposition 1 below will override this question.

Tolerating a little abuse of notation, the quantum expectation of the
position operator X on any u ¥ L2(Q) is instead

OXP(u) :=Ou, XuP=F
Q

x |u(x, y)|2 dx dy. (1.3)

The comparison result we want to prove can be formulated as follows.

Proposition 1.1.

(a) The classical average is infinite, i.e., for n-a.e. initial condition
(x, y, h):

X̄(x, y, h)=+.. (1.4)

(b) The eigenfunctions of DD are super-exponentially localized in the
following sense: Denote

tj(x) :=F
f(x)

0
|kj(x, y)|2 dy, (1.5)
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the probability density of the position in the x-direction. Then one has:

-c > 0, tj(x)=o(e−cx), (1.6)

as x Q +.. Therefore, in particular, the quantum expection of X on every
eigenstate is finite:

OXP(kj) :=F
Q

x |kj(x, y)|2 dx dy=F
+.

0
x tj(x) dx < +.. (1.7)

(c) The Schnirelman Theorem holds. As a corollary, there is a
density-1 sequence {jn}, i.e., a sequence with the property

lim
kQ+.

#{jn [ k}
k

=1, (1.8)

such that

lim
nQ+.

OXP(kjn )=+.. (1.9)

Remarks.

1. Proposition 1, (b) implies that OF(X)P(u) < +. for any (nor-
malized) state u :=;.

j=1 ajkj with j W |aj | decaying sufficiently fast. Here
F ¥ L1

loc(R) is any x-dependent observable exponentially bounded as
x Q +.. In fact, a Cauchy–Schwartz inequality shows that

|Ou, F(X) uP| [ ||F(X) u||

[ C
.

j=1
|aj | 1F

+.

0
|F(x)|2 tj(x) dx2

1/2

< +.. (1.10)

If we replace F(X) by the corresponding Heisenberg observable
F(X)(t) :=e iHt/(F(X) e−iHt/(, clearly the bound (1.10) holds uniformly in t:

|Ou, F(X)(t) uP|=|Oe−iHt/(u, F(X) e−iHt/(uP|

[ C
.

j=1
|aj | 1F

+.

0
|F(x)|2 tj(x) dx2

1/2

< +.. (1.11)

This last estimate shows that the quantum evolution is also super-
exponentially localized.
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2. Therefore, for the same u as above, one also obtains convergence
of the time average of the Heisenberg observable X(t):

OXP (u) := lim
TQ.

1
T
F
T

0
Ou, e iHt/(Xe−iHt/(uP

= C
j, k ¥N; aj=ak

ag
j akOkj, XkkP < +.. (1.12)

This Heisenberg time average OXP is the quantity to be directly compared
with the classical time average X̄.

3. Assertion (b) shows that quantum mechanics localizes the
unbounded classical chaotic motion as soon as ( > 0. This phenomenon is
an example of quantum suppression of classical chaos. Its physical origin is
clear: when the quantum particle visits the deepest recesses of the cusp, its
y-position is very well determined. Therefore, by the Uncertainty Principle,
its y-velocity must be extremely spread out, and this cannot occur at finite
energies. (This crucially depends on the Dirichlet boundary conditions:
for the Neumann Laplacian the situation is quite different. (4)) One might
think of this phenomenon as the opposite of the tunnel effect: the classical
particle is much more likely to ‘‘penetrate’’ the cusp than the quantum
one.

4. The classical limit is naturally defined as the joint limit j Q +.,
(Q 0, such that Ej(()=1 (1 being the fixed value of the energy). Since the
quantities at hand here do not depend on (, the second limit can be
forgotten. Obviously, (1.6)–(1.7) are not uniform as j Q +..

5. In part (c) the Schnirelman Theorem is stated for our non-
compact billiards. The first proof of the Schnirelman Theorem for systems
whose classical energy surface is not compact was given by Zelditch in
1991. (23) There he deals with non-compact, finite-area hyperbolic surfaces
with cusps; further results on arithmetic and hyperbolic surfaces include
refs. 1, 10–13, 21). In all these cases, however, the spectrum of the
Laplace–Beltrami operator has a continuous component that allows for
quantum delocalization. Here instead the physical context is completely
different: the spectrum is discrete and delocalization is impossible. One
point is made clear: The Schnirelman Theorem is a purely asymptotic
statement, which does not exclude that quantization may turn a classical
behavior at infinity into a behavior of a completely different nature. Hence,
in general, it might appear physically misleading to call this statement
‘‘quantum ergodicity.’’
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2. PROOF OF THE PROPOSITION

(a) Since clearly

F
Q×S1

X dn=
1

Area(Q)
F
+.

0
xf(x) dx=+. (2.1)

the assertion follows directly from classical ergodicity (8) and the following
easy lemma.

Lemma 2.1. Let (P, n) be a probability space and f t a flow on P
that preserves the measure n. If the measurable function g is bounded
below and (P, f t, n) is ergodic then, for n-a.e. z ¥P,

lim
TQ+.

1
T
F
T

0
g p f t(z) dt=F

P
g dn, (2.2)

whether g is integrable or not.

Proof. If g is integrable there is nothing to prove by ergodicity.
Otherwise >P g dn=+., because g is bounded below. In this case, for
m ¥N, set gm :=im p g, with im(x) :=x for x [ m and im(x) :=m for x > m.
By the Birkhoff theorem, there is a full-measure set Bm over which the time
average of gm exists and is equal to its phase average. Therefore, for
z ¥ B :=4m ¥N Bm (still a full-measure set),

lim inf
TQ+.

1
T
F
T

0
g p f t(z) dt \ lim inf

TQ+.

1
T
F
T

0
gm p f t(z) dt

=F
P

gm dn. (2.3)

By monotonic convergence, the sup of the r.h.s. in m is +., while the l.h.s.
does not depend on m. This proves at once that the limit in T exists and
is +.. L

(b) For the proof of this part, let us drop the subscript j from all
notation. Hence k is continuous on Q, infinitely smooth in its interior, and
such that

−(“2x+“
2
y) k(x, y)=ak(x, y), (2.4)
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with k|“Q=0. Without loss of generality k is real. Recalling definition (1.5)
one easily checks, by repeated differentiation inside the integral, that

tœ(x)=F
f(x)

0
“
2
xk

2 dy \ 2 F
f(x)

0
k “2xk dy. (2.5)

Now, think of −“2y as the 1−dimensional Laplacian on [0, a] with
Dirichlet boundary conditions. Then, in the sense of the quadratic forms,
−“2y \ (p/a)2. Therefore, multiplying (2.4) by k, integrating over y, and
using that lower bound, we obtain

−F
f(x)

0
k “2xk dy=a F

f(x)

0
k2 dy+F

f(x)

0
k “2yk

[ 5a−1 p
f(x)
226 Ff(x)

0
k2 dy. (2.6)

Plugging into (2.5),

tœ(x) \ 2 51 p
f(x)
22− a6 t(x) \ c2t(x), (2.7)

for any c > 0, provided x is large enough depending on c. This means that
either t(x) \ Cecx or t(x) [ Ce−cx. Since k is an eigenfunction, the first
possibility cannot occur. (1.6) is thus proved.

(c) The version of the Schnirelman Theorem that can be verified in
our case is the following: For any pseudodifferential operator A of order 0,
compactly supported in the position variables, there exists a density-1
sequence {jn} such that

lim
nQ+.

Okjn , A kjnP=F
Q×S1

a dn, (2.8)

where a is the principal symbol of A. The proof is a straightforward check
that all arguments of ref. 24 valid for compact billiards hold true in this
case too. We limit ourselves to remark that the crucial fact is that
Area(Q) < +., and in particular that the system is recurrent (see ref. 7
and references therein for better results in this direction).

To prove (1.9) we use an argument that is somewhat similar to
Lemma 14. Let {Xm}m ¥N be an increasing sequence of functions on Q×S1

such that: Xm is smooth and depends only on x, supp(Xm) ı {x [ m},
Xm [ X and, pointwise, Xm Q X for m Q +.. With the usual abuse of
notation, we denote Xm also the corresponding multiplication operator on
L2(Q).
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For every m there is a density-1 sequence {j (m)n }n ¥N=: s (m) such that
(2.8) holds for A=Xm (thus a=Xm), using that sequence. Now fix p1=0
and, for m \ 2, consider the following recursive definition: Select a suffi-
ciently large pm > pm−1 so that

-j (m)n \ pm, :Okj(m)n
, Xm kj(m)n

P−F
Q×S1

Xm dn : [ 1
m

, (2.9)

and

#(s (m−1) 5 [pm−1, pm))
pm −pm−1

\
1
m

(2.10)

(here we have identified s (k) with its image). (2.10) can always be verified
because s (k) 5 [pk, +.) has density 1.

Now set s :=1m ¥N (s (m) 5 [pm, pm+1)). Think of s as a sequence and
label its elements {jn}. By (2.10), s has density 1. Moreover, by (2.9),

Okjn , X kjnP \ Okjn , Xm kjnP \ F
Q×S1

Xm dn−
1
m

, (2.11)

if jn ¥ [pm, pm+1). Therefore the lim inf of the l.h.s. in n corresponds to the
lim inf of the r.h.s. in m: the latter is infinity by monotonic convergence.

APPENDIX: POSITIVITY OF THE LYAPUNOV EXPONENT

In this section we prove that, as claimed in the Introduction, f t has a
positive Lyapunov exponent l (and thus a negative exponent −l, as f t is
volume-preserving and the exponent in the direction of the flow is
obviously 0).

For z :=(x, y, h) ¥ Q×S1, denote Ec
z … Tz(Q×S1) the one-dimen-

sional subspace of the tangent space at z generated by “tf t(z), i.e., the
direction of the flow in z. (The inconsequential complications arising when
(x, y) ¥ “Q are ignored.) It is known that Df t preserves the splitting
Ec À (Ec) + (see ref. 18—this corresponds to the fact that the wave-front of
a light wave is always orthogonal to its rays). Therefore the stable and
unstable directions at z (denoted E s

z and Eu
z , respectively) are to be looked

for within (Ec
z)

+ . To verify their existence we use the results of ref. 8
about M, the Poincaré section given by all unit vectors (line elements, in
the language of ref. 17) that are based in “Q and point towards the interior
of Q. We know that T, the Poincaré map of M, has stable and unstable
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directions, denoted F s(u): we will use these to define E s(u) everywhere (more
precisely, in a full-measure subset of Q×S1).

Consider a non-singular element z ¥M, that is, a line element whose
future orbit never hits “Q tangentially or intersects the vertex at (0, 1).
(Singular line elements can be neglected because they form a measure-zero
set in M, and thus in Q×S1, relatively to their respective invariant mea-
sures). Since z is non-singular, Ec

z ¼ TzM and so Pz: TzM0 (Ec
z)

+ , the
projection in the direction of Ec

z, is non-degenerate. We define
E s(u)
z :=PzF

s(u)
z . Finally, for t > 0, Df tE s(u)

z define the stable and unstable
directions at all points in the future orbit of z. It is easy to see that this
definition is unambiguous.

For a non-singular z (not necessarily in M), take vu ¥ Eu
z . The sought

Lyapunov exponent is

l(z) := lim
TQ+.

1
T

log
|DfTz (vu)|

|vu|
= lim

TQ+.

1
T

log ||DfTz |Euz ||. (3.1)

Let us introduce the following notation: y(z) :=min{t \ 0 | f t(z) ¥ “Q
×S1} is the (forward) free path of the line element z, y−(z) is the backward
free path, analogously defined, and zŒ=zŒ(z) :=f−y

−(z)(z) is the closest line
element in the past orbit of z that is based in the boundary. Define

g(z) :=
1
y(zŒ)

log ||Dfy(zŒ)+zŒ |EuzŒ ||, (3.2)

where Df t+ means limeQ 0+ Df t+e. (This is needed because f t is discontin-
uous at “Q×S1.) By construction, g is constant along the rectilinear parts
of a given orbit. Furthermore, due to the composition properties of the
differential,

l(z)= lim
TQ+.

1
T
F
T

0
g p f t(z) dt. (3.3)

In fact, in (3.1) and (3.3), the two functions that are averaged in T can only
differ in the first and last segment of of {f t(z)}Tt=0. This difference gets
washed away as T Q +..

We claim that g > 0. In order to see this, let us go back to the Poincaré
map T. For z ¥M, we have seen that

Dfy(z)+z |(Ecz) + =PT(z) DTz P
−1
z . (3.4)
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But it is a fact that DT|Fu is strictly expanding w.r.t. to a certain metric in
TM. This metric is called in ref. 8 the increasing metric and is defined as
|v|inc :=|Pv|. This fact and (3.4) show that Dfy+|Eu is strictly expanding
which, in view of (3.2), proves the claim.

Finally we apply Lemma 14 to conclude that, for n-a.e. z ¥ Q×S1,

l(z)=F
Q×S1

g dn > 0. (3.5)
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